首页> 外文OA文献 >Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations
【2h】

Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations

机译:用结构化方法改进缺少标签的多标签学习   语义相关

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-label learning has attracted significant interests in computer visionrecently, finding applications in many vision tasks such as multiple objectrecognition and automatic image annotation. Associating multiple labels to acomplex image is very difficult, not only due to the intricacy of describingthe image, but also because of the incompleteness nature of the observedlabels. Existing works on the problem either ignore the label-label andinstance-instance correlations or just assume these correlations are linear andunstructured. Considering that semantic correlations between images areactually structured, in this paper we propose to incorporate structuredsemantic correlations to solve the missing label problem of multi-labellearning. Specifically, we project images to the semantic space with aneffective semantic descriptor. A semantic graph is then constructed on theseimages to capture the structured correlations between them. We utilize thesemantic graph Laplacian as a smooth term in the multi-label learningformulation to incorporate the structured semantic correlations. Experimentalresults demonstrate the effectiveness of the proposed semantic descriptor andthe usefulness of incorporating the structured semantic correlations. Weachieve better results than state-of-the-art multi-label learning methods onfour benchmark datasets.
机译:最近,多标签学习在计算机视觉领域引起了极大的兴趣,在许多视觉任务(例如多对象识别和自动图像注释)中找到了应用。将多个标签与复杂图像相关联非常困难,这不仅是由于描述图像的复杂性,而且还因为观察到的标签的不完整性。现有的解决该问题的方法要么忽略了标签-标签和实例-实例的相关性,要么只是假设这些相关是线性且非结构化的。考虑到图像之间的语义相关性实际上是结构化的,因此本文提出结合结构化语义相关性来解决多标签学习中的缺失标签问题。具体来说,我们使用有效的语义描述符将图像投影到语义空间。然后在这些图像上构建语义图以捕获它们之间的结构化相关性。我们将这些语义图拉普拉斯算子作为多标签学习公式中的平滑术语,以纳入结构化语义相关性。实验结果证明了所提出的语义描述符的有效性以及结合结构化语义相关性的有效性。在四个基准数据集上,与最新的多标签学习方法相比,我们可以获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号